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Abstract. Feynman diagrams are the best tool we have to study perturbative quantum field
theory. For this very reason the development of any new technique that allows us to compute
Feynman integrals is welcome. By the middle of the 1980s, Halliday and Ricotta suggested
the possibility of using negative-dimensional integrals to tackle the problem. The aim of this
work is to revisit the technique as such and check on its possibilities. For this purpose, we
take a box diagram integral contributing to the photon–photon scattering amplitude in quantum
electrodynamics using the negative-dimensional integration method. Our approach enables us
to quickly reproduce the known results as well as six other solutions as yet unknown in the
literature. These six new solutions arise quite naturally in the context of negative-dimensional
integration method, revealing a promising technique to handle Feynman integrals.

1. Introduction

Scattering amplitudes, radiative corrections,β functions of renormalization group, etc, all
require the computation of Feynman integrals [1], which are more complex to evaluate, the
more loops in a given diagram one has. Since this approach is still the best technique we
have to study quantum field theory (QFT) perturbatively, solving Feynman integrals becomes
basic to any serious study of physical processes of interest involving those quantities. Such
computations become harder to do not only with an increasing number of loops, but also
with an increasing number of massive particles in the intermediate states.

The standard way to solve such integrals starts with the introduction of Feynman
parameters, Wick rotation and then finally, integration. This method is somewhat tedious
and sometimes it is not possible to exactly solve the parametric integrals. For this
reason physicists developed several other techniques to calculate Feynman integrals [2].
A technique known as negative-dimensional integration method (NDIM) [3–5] has also
been considered to tackle the problem.

One of the outstanding features of NDIM is that the complexities of performingD-
dimensional momentum integrals are transferred to the easier task of solving systems
of linear algebraic equations. NDIM has allowed us to recover very easily the two
known hypergeometric series representations for the pertinent Feynman integral. Another
outstanding feature of NDIM—and this is in our opinion its greatest potential—is that it
simultaneously gives six new results for the integral in question in a very straightforward
manner. Each of them is valid in certain regions of external momenta and are related to the
others by analytic continuation, either directly or indirectly.

Hypergeometric functions of one and two variables have many well known analytic
continuation formulae but as the number of variables increases—as far as we know—the
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fewer the known relations [6] are. On the other hand, since NDIM provides us with very
many simultaneous results, which in principle must be connected by analytic continuation,
we come to the realization that it is not only a very powerful technique to work out Feynman
integrals but an elegant approach to check on analytic continuation properties of the resulting
functions as well. Consider our present case: in all we have eight distinct solutions for
the Feynman integral for the photon–photon scattering, two of which have already been
obtained in the literature and six new ones, which are connected with each other by suitable
analytic continuation formulae.

One could rightfully ask: Why do we want so many distinct results at the same time?
We give some good arguments for this. First, if we have only one† or at most two‡
results in distinct regions of the external momenta, all the other regions must be worked
out entirely through the analytic continuation formulae, which is not always an easy task
to perform and is certainly very time-consuming. Secondly, the important special case
of forward scattering in the relativistic regime cannot be dealt with if one has only the
two known hypergeometric series representations for the scalar Feynman integral relative
to the photon–photon scattering. These series are unsuitable for handling this special case
because of the very nature of their variables. The same reasoning applies to the backward
scattering. Thirdly, our results are expressed in a compact form that can be transformed—
by an appropriate integral representation—into the more cumbersome standard form in
terms of dilogarithms, if one wishes. Fourthly, we can identify the branch points and
singularities of Feynman integrals directly from their hypergeometric series representations.
Fifthly and lastly, since any two distinct solutions are related by analytic continuation,
NDIM is an elegant and economical way of obtaining analytic continuation formulae among
hypergeometric series (see section 5).

The outline of our paper is as follows. In section 2 we give a brief review of the
methodology to be employed and compute the integral proper, writing down the two well
known hypergeometric series representations for it in section 3. In section 4 we present the
six new solutions of the given integral and in section 5 we discuss these new results. In
section 6 we conclude.

2. Integration in negative dimensions

NDIM was introduced by Halliday and Ricotta [3] some years ago. Here we present a brief
review of this technique. Basically one performs an analytic continuation

∫
dDq

(A)(B)(C) . . .

AC−→
∫

dDq (A)(B)(C) . . . (1)

so that one gets a polynomial integral inD < 0§ from a rather complicated one inD > 0.
We then solve it inD < 0 and go back [4] toD > 0, through another analytic continuation.
One of the advantages of NDIM is that simultaneously we get several hypergeometric series
representations for the integral inD > 0, i.e. we obtain expressions for all the possible
regions of the external momenta.

† Via parametric integration [1].
‡ Via Mellin-Barnes’ integration [2, 7].
§ The negative-dimensional linear operator object here can be seen from the viewpoint of positive-dimensional
fermionic integration [8].
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We start from the relation [3–5] between a Gaussian integral and its counterpart in
negative dimensions∫

dDq exp(−λq2) =
(π
λ

)D/2
=
∞∑
j=0

(−1)jλj

j !

∫
dDq (q2)j (2)

where in the last step we have expanded the exponential function in Taylor series. Just as
in dimensional regularization [9] we take this expression as the definition of the negative
D-dimensional integral [10]. The middle term is an analytic function ofD so the integral
on the right-hand side is also an analytic function ofD [11, 12].

From this equation we get,∫
dDq (q2)j = (−1)jπD/2δD/2,−j0(1+ j). (3)

In a similar way, we can solve, e.g.

J (i, j, k, l;m) =
∫

dDq (q2−m2)i [(q − p)2−m2]j [(q − k1)
2−m2]k[(q − k2)

2−m2]l

(4)

whose counterpart inD > 0 is the integral

K(i, j, k, l;m) =
∫

dDq

(q2−m2)i [(q − p)2−m2]j [(q − k1)2−m2]k
1

[(q − k2)2−m2]l
. (5)

This is one of the integrals that contributes to the photon–photon scattering amplitude
in QED and it is the one we want to evaluate in our ‘lab test’ for NDIM. Of course,
since the external photons are real particles, they are on-shell, i.e. we consider here that
k2

1 = k2
2 = (p − k1)

2 = (p − k2)
2 = 0 (see figure 1).

Figure 1. Feynman diagram for photon–photon scattering in thes-channel.
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So, to begin with, let our ‘Gaussian integral’ be

I =
∫

dDq exp{−α(q2−m2)− β[(q − p)2−m2] − γ [(q − k1)
2−m2]

−ω[(q − k2)
2−m2]}. (6)

Completing the square, integrating overq and expanding the exponential, we get

I = πD/2
∞∑
ni=0

(−s)n1(−t)n2(−m2)n3αn2+n4βn2+n5γ n1+n6ωn1+n7

n1!n2!n3!n4!n5!n6!n7!
0

(
1+ n3− n1− n2− D

2

)
(7)

wheres and t are the Mandelstam variables (see figure 1) andm here is the mass of the
virtual matter fields. Since we use a multinomial expansion the sum index above must
satisfy the constraint

n4+ n5+ n6+ n7 = n3− n1− n2− D
2
.

On the other hand, expanding the exponential of (6), we have

I =
∞∑

i,j,k,l=0

(−1)i+j+k+lαiβjγ kωl

0(1+ i)0(1+ j)0(1+ k)0(1+ l)J (i, j, k, l;m) (8)

where we define our negative-dimensional integral, equation (4). Comparing the expressions
(7) and (8) we obtain a general relation for the integralJ (i, j, k, l;m),
J (i, j, k, l;m) = πD/20(1+ i)0(1+ j)0(1+ k)0(1+ l)

×
∞∑
ni=0

(−s)n1(−t)n2

n1!n2!n3!n4!

(−m2)n3

n5!n6!n7!
δn2+n4,iδn2+n5,j δn1+n6,kδn1+n7,l

×0
(

1+ n3− n1− n2− D
2

)
. (9)

The several Kronecker delta’s lead to a system of linear algebraic equations linking the sum
indicesni , with five equations and seven variables, i.e.

n2+ n4 = i
n2+ n5 = j
n1+ n6 = k
n1+ n7 = l
n4+ n5+ n6+ n7 = n3− n1− n2− 1

2D.

(10)

Since there are fewer equations than the total number of indices, the system above can in
fact be solved if and only if we leave two free indices: that is, the result will be given
as a double series. There are many ways we can choose these two free indices: indeed
altogether there are 21 distinct ways. Of these, six will lead to unsolvable systems, i.e.
trivial solutions, which are discarded. Of the remaining 15 which are non-trivial solutions
we define eight sets, according to their variables, and each set is a basis generating the
corresponding space of functions.
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3. Hypergeometric series representations

The result we obtained in the previous section, equation (9), is written in the negativeD

region (and positive exponents of propagators). We must bring this result back to our real
physical world, that of positiveD and negative exponents of propagators. The technique
that allows us to carry out the analytic continuation to the positiveD region is explained
in detail in [4].

Solving the system we find five hypergeometric series which can be divided into two
sets according to its variables,{I1}, and{I2, I3, I4, I5}. The solution in the first category is

I1 =
(π

2

)D/2 2
√
π(−2m2)σ0(−σ)

0( 1
2 − σ

2 + D
4 )0(− σ

2 + D
4 )

∞∑
n1,n2=0

( s

4m2

)n1

×
(

t

4m2

)n2 (−i|n1)(−j |n1)(−k|n2)(−l|n2)(−σ |n1+ n2)

n1!n2!(− σ
2 + D

4 |n1+ n2)(
1
2 − σ

2 + D
4 |n1+ n2)

(11)

where we defineσ = i + j + k + l + D
2 and use the Pochhammer symbol

(a|k) ≡ (a)k = 0(a + k)
0(a)

.

Substitutingi = j = k = l = −1, we get the integral (5) with exponents corresponding
to the one we want to calculate for box diagrams. Then, the first hypergeometric series
representation yields (in four dimensions)

J1(−1,−1,−1,−1;m) = π2

6m4
F3

(
1, 1, 1, 1; 5

2

∣∣∣∣ s

4m2
,
t

4m2

)
. (12)

This result is exactly that obtained by Davydychev [7] using the Mellin–Barnes’
representation for massive propagators [2]. Note that since we are in Euclidean space
there is an overall factori difference when compared with Davydychev’s result, obtained
in Minkowski space (his result has the extra factori). This expression is symmetric ins
andt and is non-vanishing fors = t = 0. It allows us to read off the particular cases where
the integral has three and two propagators respectively, and also the analytic continuation
to other regions of external momenta. This expression is valid in the region of convergence
of the series which defines theF3 hypergeometric function [13, 6],

F3(α, α
′, β, β ′; γ |x, y) =

∞∑
j,k=0

xjyk

j !k!

(α|j)(α′|k)(β|j)(β ′|k)
(γ |j + k) (13)

where|x| < 1 and|y| < 1. In other words, it is valid below the threshold of pair production.
It is also suitable for studying the non-relativistic limit since the Mandelstam variables must
be less than 4m2. We note thats = 4m2 defines the point where the process changes its
nature, that is, there exists the possibility of pair creation and this fact manifests itself in
the amplitude as a branch point in the Feynman integral [1, 12].

The hypergeometric function in (12) can be expressed in terms of its double integral
representation [13], and from there one can arrive at the standard result expressed in terms
of a rather cumbersome sum of logarithms and dilogarithms [7, 14].

The next set of solutions, also obtained by Davydychev [7], has variables 4m2/s and
4m2/t , the inverse of the ones in the first solution. In the following we write down these
four solutions:

I2 = 2πD/2(−t)l(−s)j (−m2)D/2+i+k(−i|j)(−k|l)
(1+ i − j + k − l|D2 + j + l)

∞∑
n1,n2=0

1

n1!n2!

(
4m2

s

)n1
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×
(

4m2

t

)n2 (−j |n1)(−l|n2)(
1+i−j+k−l

2 |n1+ n2)

(1+ i − j |n1)(1+ k − l|n2)(1+ i + k + D
2 |n1+ n2)

×(1+ 1
2(i − j + k − l)|n1+ n2) (14)

I3 = 2πD/2(−t)k(−s)j (−m2)
D
2 +i+l(−i|j)(−l|k)

(1+ i + j − k − l|D2 + j + k)
∞∑

n1,n2=0

1

n1!n2!

(
4m2

s

)n1

×
(

4m2

t

)n2 (−j |n1)(−k|n2)(
1+i−j−k+l

2 |n1+ n2)

(1+ i − j |n1)(1− k + l|n2)(1+ i + l + D
2 |n1+ n2)

×(1+ 1
2(i − j − k + l)|n1+ n2) (15)

I4 = 2πD/2(−t)k(−s)i(−m2)
D
2 +j+l(−j |i)(−l|k)

(1− i + j − k + l|D2 + i + k)
∞∑

n1,n2=0

1

n1!n2!

(
4m2

s

)n1

×
(

4m2

t

)n2 (−i|n1)(−k|n2)(
1−i+j−k+l

2 |n1+ n2)

(1− i + j |n1)(1− k + l|n2)(1+ j + l + D
2 |n1+ n2)

×(1+ 1
2(−i + j − k + l)|n1+ n2) (16)

and

I5 = 2πD/2(−t)l(−s)i(−m2)
D
2 +j+k(−j |i)(−k|l)

(1− i + j + k − l|D2 + i + l)
∞∑

n1,n2=0

1

n1!n2!

(
4m2

s

)n1

×
(

4m2

t

)n2 (−i|n1)(−l|n2)(
1−i+j+k−l

2 |n1+ n2)

(1− i + j |n1)(1+ k − l|n2)(1+ j + k + 1
2D|n1+ n2)

×(1+ 1
2(−i + j + k − l)|n1+ n2). (17)

From these we construct the second hypergeometric series representation for the
Feynman integral as just the linear combination,

J2(i, j, k, l;m) = I2+ I3+ I4+ I5. (18)

Note thatJ2 is the analytic continuation ofJ1, see for example Erdélyi et al [13]. While
J1 is valid in the non-relativistic case andJ2 in the relativistic one, they do not cover all
the possible regions of external momenta.

An important point here that one must be aware of is that even though singularities
might appear in isolated terms of the RHS, for the special case wheni = j = k = l = −1,
the above equation (18) cannot be singular since the corresponding analytic continuation
formula (12) is not.

To overcome this difficulty let us introduce small corrections in the parametersβ and
β ′ of the hypergeometric functionF3(α, α

′, β, β ′; γ |x, y) [15]. This recourse corresponds
to correcting the exponents of propagators [16]. In our case we take

β → 1+ δ β ′ → 1+ δ′.
Next we expand all the (gamma) factors which containδ and δ′ and theF2 functions

in Taylor series aroundδ = 0 andδ′ = 0. In the end we take the limit of vanishingδ and
δ′. This result is valid, as in the first case, within the region of convergence of the series
which defines theF2 function [13, 6],

F2(α, β, β
′; γ, γ ′|z1, z2) =

∞∑
j,k=0

z
j

1z
k
2

j !k!

(α|j + k)(β|j)(β ′|k)
(γ |j)(γ ′|k) |z1| + |z2| < 1.
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Following these steps we arrive at Davydychev’s second expression for the Feynman
integral [7]. Note that now the Mandelstam’s variabless andt can never be zero. Moreover,
as with the case ofJ1, he has shown that the resulting expression forJ2 can be converted
into the standard result in terms of sum of logarithms and dilogarithms through the use of
a double integral representation forF2 [13].

4. New results from NDIM

Using NDIM we have evaluated a massive box diagram integral, namely, a Feynman integral
bearing four massive propagators. This integral is the one appearing in the photon–photon
scattering in QED and the two well known results, expressed in terms of hypergeometric
functions, have been easily found. So, the computation of such an integral, done as a
‘lab test’ for NDIM, has revealed a powerful technique, which transfers the intricacies of
performing Feynman integrals in positive dimensions to that of solving a system of linear
algebraic equations in negative dimensions, a far simpler task to perform than, for example,
solving parametric integrals. Surprisingly, the technique not only reproduces the standard
results, but also gives solutions covering other regions of the external momenta. The 10
remaining solutions for the system are as follows:

I6 = f6S1

(
α6, α

′
6, β6, β

′
6, θ6; γ6, θ

′
6

∣∣∣∣−ts , 4m2

s

)
(19)

I7 = I6(i ↔ k, j ↔ l|s ↔ t) (20)

I8 = f8S2

(
α8, β8, γ8, δ8, φ8; ρ8, φ

′
8

∣∣∣∣−ts , −4m2

t

)
(21)

I9 = I8(k ↔ l) (22)

I10 = f10S2

(
α10, β10, γ10, δ10, φ10; ρ10, φ

′
10

∣∣∣∣−st , −4m2

s

)
(23)

I11 = I10(i ↔ j) (24)

I12 = f12S2

(
α12, β12, γ12, δ12, φ12; ρ12, φ

′
12

∣∣∣∣4m2

s
,
−t

4m2

)
(25)

I13 = I12(k ↔ l) (26)

I14 = f14S2

(
α14, β14, γ14, δ14, φ14; ρ14, φ

′
14

∣∣∣∣4m2

t
,
−s
4m2

)
(27)

I15 = I14(i ↔ j) (28)

where we have defined the following two functions

S1(α, α
′, β, β ′, θ; γ, θ ′|z1, z2) =

∞∑
µ,ν=0

z
µ

1 z
ν
2

µ!ν!

(α|µ)(α′|ν)(β|µ)(β ′|ν)
(γ |µ+ ν)

(θ |µ+ ν)
(θ ′|µ+ ν) (29)

and

S2(α, β, γ, δ, φ; ρ, φ′|z1, z2) =
∞∑

µ,ν=0

z
µ

1 z
ν
2

µ!ν!

(α|µ− ν)(β|µ)(γ |ν)(δ|ν)
(ρ|µ)

(φ|ν − µ)
(φ′|ν − µ) (30)

with

f6 = πD/2
( s

4

)σ (−i|σ)(−j |σ)
( 1

2 − 1
2σ |σ + 1

4D)(− 1
2σ |σ + 1

4D)
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f8 = πD/2sltσ−l
(−k| − i − j − 1

2D)(−i|i − k + l)(−j |σ − l)
(−i − l + σ |i + l + 1

2D)

f10 = πD/2sj tσ−j
(−l| − i − j − 1

2D)(−i|i + k − l)(−j |σ − k)
(−i − k + σ |i + k + 1

2D)

f12 = πD/2sl(−m2)σ−l
(−k|l)(σ + 1

2D|l − 2σ − 1
2D)

(σ + 1
2D|2l − 2σ)

f14 = πD/2sj (−m2)σ−j
(−i|j)(σ + 1

2D|j − 2σ − 1
2D)

(σ + 1
2D|2j − 2σ)

with the following parameters for the functionS1:

α6 = −k
α′6 = 1

2 − 1
2σ − 1

4D

β6 = −l
β ′6 = 1− 1

2σ − 1
4D

θ6 = −σ
γ6 = 1+ i − σ
θ ′6 = 1+ j − σ

and the parameters for the functionS2:

α8 = j + k + 1
2D α10 = i + k + 1

2D

β8 = −l β10 = −j
γ8 = 1− 1

2σ − 1
4D γ10 = 1− 1

2σ − 1
4D

δ8 = 1
2 − 1

2σ − 1
4D δ10 = 1

2 − 1
2σ − 1

4D

φ8 = −i − j − k − 1
2D φ10 = −i − k − l − 1

2D

ρ8 = 1+ k − l ρ10 = 1+ i − j
φ′8 = 1− i − k − 1

2D φ′10 = 1− i − l − 1
2D

α12 = 1
2 + 1

2i + 1
2j + 1

2k − 1
2l α14 = 1

2 + 1
2i − 1

2j + 1
2k + 1

2l

β12 = −l β14 = −j
γ12 = −i γ14 = −k
δ12 = −j δ14 = −l
φ12 = −i − j − k − 1

2D φ14 = −i − k − l − 1
2D

ρ12 = 1+ k − l ρ14 = 1+ i − j
φ′12 = − 1

2i − 1
2j − 1

2k + 1
2l φ′14 = − 1

2i + 1
2j − 1

2k − 1
2l.

Observe that when the parametersθ andθ ′ in S1 are equal, then our defined functionS1

becomes the known Appel’s hypergeometric functionF3, whereas when the parametersφ
andφ′ in S2 are equal, our defined functionS2 reduces to the known Appel’s hypergeometric
functionH2 (see section 5).

Looking carefully at these one can verify without difficulty that there are symmetry
relations among them. For example, if we make the substitutions ↔ t , i ↔ k andj ↔ l

in (19) we obtain (20). In a similar manner, the substitutionk ↔ l in (21) transforms it
into (22) and the substitutions ↔ t , j ↔ k, i ↔ l yields (22)↔ (23). There are several
other symmetry properties of the box diagram which transform one solution into another.
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Now we must combine them so as to have sums of linearly independent solutions
bearing the same functional variable. This is the constructive prescription [4]. We then get
from the above list six types of functional variables, that is, six new such combinations or
six new results for the Feynman integral (5), namely,

J3 = I6 J4 = I7 (31)

J5 = I8+ I9 J6 = I10+ I11 (32)

J7 = I12+ I13 J8 = I14+ I15. (33)

Note that the relevant Feynman integral is obtained via

K(i, j, k, l;m) ≡ J (−i,−j,−k,−l;m).

5. Regularization and discussion

Here we constrain ourselves to the special case where the integral (5) is the one for QED
photon–photon scattering at the one-loop level, that is, we are interested in taking the
particular valuesi = j = k = l = −1. However, for some of the resulting expressions
for the Feynman integral these values cannot be implemented straight away, because in
the intermediate steps of the calculation they may become singular. Therefore some kind
of regularization procedure is called for, but, of course, the final result is independent
of the regularization procedure adopted (see the discussion following equation (18)).
This is a regularization whereby the exponents of the propagators are modified (analytic
regularization). Another difficulty to bear in mind is that Feynman integrals may be
divergent for the physically meaningful dimensionD = 4. The nature of this last singularity
is completely different from the former. In all the results we have, the singularities arising
from the exponentsi = j = k = l = −1 cancel out. However, the poles inD may remain
in the final expressions for the integral we are studying, because we are not considering
the whole physical process of photon–photon scattering but only one of the integrals in it.
Of course, if one considers the whole process, with all the diagrams in it, these poles also
cancel out.

For the first two, i.e.J3 and J4, we can adopt the standard procedure of dimensional
regularization [1]. IntroduceD = 4− ε and expand the whole expression aroundε = 0 to
get

I6 = 8π2

s2

[−2

ε
+ log(−2πs)+ γE

]
F3(1, 1

2 + 1
2ε, 1, 1+ 1

2ε; 2+ 1
2ε|x, y) (34)

wherex = −t/s, y = 4m2/s, F3 is a hypergeometric function of two variables which is
absolutely convergent for|x| < 1 and|y| < 1, andγE is Euler’s constant [6, 13]. We can
write a simpler expression by using a reduction formula [6, 13, 18],

F3(α, α
′, β, γ − β; γ |x, y) = 1

(1− y)α′ F1(β, α, α
′; γ |x, z) (35)

wherez = y/(y − 1) andF1 is another hypergeometric function of two variables which
is absolutely convergent in the same region of theF3 above. This function has a simple
integral representation [13],

F1(α, β, β
′; γ |z1, z2) = 0(γ )

0(α)0(γ − α)
∫ 1

0
du

uα−1(1− u)γ−α−1

(1− uz1)β(1− uz2)β
′ (36)
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where the parameters must satisfy Re(α) > 0 and Re(γ − α) > 0. It is straightforward to
evaluate this integral when the parameters take the values we are using. Substituting (36)
and (35) in (34) and expanding the hypergeometric function in Taylor series, we get

J3(−1,−1,−1,−1;m) ≡ I6 = 8π2

s(s − 4m2)

[−2

ε
− ∂β ′ − ∂γ + log(−2πs)

+γE + log

(
1− 4m2

s

)]
F1(α, β, β

′; γ |x, z). (37)

Note that there is a simple pole which we did not expect by simple power counting.
We will discuss this singularity and the one that appears in the following solution in the
next section. Here we introduce the parametric derivatives [7, 15],

∂(α|z)
∂α

≡ ∂α(α|z) = (α|z)[ψ(α + z)− ψ(α)] (38)

where theψ-function is the logarithmic derivative of the gamma function [13, 17]. First
carry out the parametric derivatives in (36), then substitute the values of the parameters and
integrate. For the other terms the integral results in

F1(1, 1, 1
2; 2|x, z) = −

s

t

1

Rst
log

(
1+ Rst
1− Rst

Rs − Rst
Rs + Rst

)
(39)

where

Rs =
√

1− 4m2

s
Rst =

√
1− 4m2

t
− 4m2

s
. (40)

We can write down immediately the result for the integralI7 by noting that it can be
transformed intoI6 if we make the changesi ↔ k, j ↔ l ands ↔ t ,

J4(−1,−1,−1,−1;m) ≡ I7 = 8π2

t (t − 4m2)

[−2

ε
− ∂β ′ − ∂γ + log(−2πt)

+γE + log

(
1− 4m2

t

)]
F1(α, β, β

′; γ |w,w′) (41)

wherew = −s/t andw′ = 4m2/(4m2− t). For the region of convergence see figure 2.
For the remaining solutions dimensional regularization is unsuitable to regularize their

divergences. Consider, for example, (21) where there is a factor(−i|i − k + l) which is
divergent in the particular limit we are interested in, i.e.i = j = k = l = −1. This factor

Figure 2. Region of absolute convergence of the solutionsJ1, J3 andJ4.
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has noD-dependence and dimensional regularization here is useless. What we must do is
to use a different procedure, namely, regularizing the exponent of some of the propagators
[7, 16].

Let us then consider the fifth solution of the Feynman integral,J5. We must regularize
one exponent of one of the propagators, say,k = −1− ζ (we could also take the exponent
l). The important point is that the final result will be independent of this choice. The other
exponents are set to minus one while the dimension of the spacetime remains arbitrary.
Doing this we have

I8 = πD/2 1

st3−D/2
0(3− 1

2D + ζ )0(ζ )02( 1
2D − 2− ζ )

tζ0(1+ ζ )0(D − 4− ζ )
×H2

(
−ζ, 1, 1+ 1

2
ζ,

1

2
+ 1

2
ζ, 1− ζ

∣∣∣∣−ts , −4m2

t

)
(42)

and

I9 = πD/2
0(3− 1

2D)0
2( 1

2D − 2)

st3−D/2
0(−ζ )

sζ0(D − 4− ζ )
×H2

(
0, 1+ ζ, 1+ 1

2
ζ,

1

2
+ 1

2
ζ, 1+ ζ

∣∣∣∣−ts , −4m2

t

)
. (43)

The hypergeometric functionH2 is defined by the double sum [13],

H2(α, β, γ, δ; ρ|x, y) =
∞∑

m,n=0

(α|m− n)(β|m)(γ |n)(δ|n)
(ρ|m)

xmyn

m!n!
. (44)

The region of absolute convergence of this functionH2(. . . |x, y) is bounded by the
lines [13],

|y| < 1

1+ |x| |x| < 1 |y| < 1 (45)

see figure 3.
Proceeding with our analysis of the new results, for the solutionJ5, let us now expand

theH2 function in Taylor series aroundζ = 0, keeping terms up to the first order inζ

J5(−1,−1,−1,−1;m) = 25−DπD/2
√
π0(3− 1

2D)0(
1
2D − 2)

st3−D/20( 1
2D − 3

2)

Figure 3. Region of absolute convergence of theH2 hypergeometric function.
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Figure 4. Region of absolute convergence ofJ2, J5 andJ6. The curve that separatesJ2 of the
others is a branch cut, see equation (63).

×
[
−γE + log

( s
t

)
− 2ψ

(
1

2
D − 1

)
+ ψ

(
3− 1

2
D

)
+ 4

D − 4
− ∂α − ∂ρ

]
×H2

(
α, 1, 1,

1

2
; ρ
∣∣∣∣−ts , −4m2

t

)
(46)

where the parametric derivatives must be taken at the pointα = 0; ρ = 1. The nature and
meaning of these singularities will be the touched on in the following section.Observe
here that only the divergence inD = 4 remains. The apparent divergences inζ = 0 have
cancelled out.

In a similar manner we regularize the sixth solution. But now we takei = −1− ζ . As
a result we get

J6(−1,−1,−1,−1;m) = 25−DπD/2
√
π0(3− 1

2D)0(
1
2D − 2)

ts3−D/20( 1
2D − 3

2)

×
[
−γE + log

(
t

s

)
− 2ψ

(
1

2
D − 1

)
+ ψ

(
3− 1

2
D

)
+ 4

D − 4
− ∂α − ∂ρ

]
×H2

(
α, 1, 1,

1

2
; ρ
∣∣∣∣−st , −4m2

s

)
(47)

and as we shall see later on, these two functionsH2 are related to the functionsF3 that are
divergent also. The region of convergence can be constructed as we did above for theH2

function (see figure 4).
Consider now the seventh solution of the Feynman integral,J7. Like the preceding

case, it has a simple pole in the exponents, so that it demands only one suitable parameter
to regularize it. Looking at (25) and (26) we note that a good choice to introduce our
regularization parameter is to takel = −1− ζ , while the other exponents can be set to
i = j = k = −1 without any problem. Then,

I12 = −π
2

m2s

(
−1

ζ
− 1+ logs +O(ζ )

)
×S2

(
−1

2
+ 1

2
ζ, 1+ ζ, 1, 1, 3− 1

2
D; 1+ ζ, 1− 1

2
ζ

∣∣∣∣4m2

s
,
−t

4m2

)
(48)
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and

I13 = −π
2

m2s

(
1

ζ
− 1− γE − log(−m2)+O(ζ )

)
×S2

(
−1

2
− 1

2
ζ, 1, 1, 1, 3− 1

2
D + ζ ; 1− ζ, 1+ 1

2
ζ

∣∣∣∣4m2

s
,
−t

4m2

)
. (49)

Now expand the factors of (48), (49) and the series (30) aroundζ = 0 and substitute
the valuesα = − 1

2, β = γ = δ = ρ = φ = φ′ = 1. Using the fact that∂β + ∂ρ = 0 (only
because these two parameters are equal) and an analogous relation betweenφ andφ′, we
get, in four dimensions,

J7(−1,−1,−1,−1;m) = π2

m2s

[
2+ γE + ∂α + ∂ρ − log

(−s
m2

)]
×H2

(
α, 1, 1, 1; ρ

∣∣∣∣4m2

s
,
−t

4m2

)
. (50)

Note that the above result is finite and that there is no dependence onφ andφ′, soS2

reduces toH2. The pole cancels out and then we can take the limit of vanishingζ .
The next two solutions follow the same procedure, yielding

J8(−1,−1,−1,−1;m) = π2

m2t

[
2+ γE + ∂α + ∂ρ − log

(−t
m2

)]
×H2

(
α, 1, 1, 1; ρ

∣∣∣∣4m2

t
,
−s
4m2

)
(51)

which is also finite. The region of convergence of this solution is shown in figure 5.
The parametric derivatives have already been calculated by Davydychev [7]. Using the
transformation formula betweenH2 andF2 [18],

H2(α, β, γ, δ; ρ|x, y) = A1F2

(
α + γ, β, γ ; ρ, 1+ γ − δ

∣∣∣∣x, −1

y

)
+A2F2

(
α + δ, β, δ; ρ, 1+ δ − γ

∣∣∣∣x, −1

y

)
(52)

where we define the coefficients

A1 = 0(1− α)0(δ − γ )
0(δ)0(1− α − γ )y

−γ A2 = A1(γ ↔ δ) (53)

we can identify the parametric derivatives ofH2 with the ones ofF2 calculated by
Davydychev. Care must be taken with (52) because with the particular parameters we
are using the individual terms on the RHS are singular, but their singularities cancel out
when both terms are added together.

5.1. Discussion

As we have mentioned earlier, the set of new solutions we have obtained here contains
singular solutions that deserve a closer look. Let us examine them in order to understand
the meaning and the nature of such singularities. To begin with, we give some arguments
to show the correctness of our results.

Consider the first result,

J1(−1,−1,−1,−1;m) = π2

6m4
F3

(
1, 1, 1, 1; 5

2

∣∣∣∣ s

4m2
,
t

4m2

)
. (54)
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Figure 5. Region of absolute convergence of theJ8. The solutionJ7 is symmetric to it in
s ↔ t . They are finite and hold in the relativistic regime of forward scattering in thet and
s-channel respectively.

The hypergeometric functionF3 which appears here is related to the hypergeometric
functionH2 via analytic continuation (see Erdélyi [18]),

F3(α, α
′, β, β ′; γ |x, y) = B1H2

(
1+ α − γ, α, α′, β ′; 1+ α − β

∣∣∣∣1x ,−y
)

+B2H2

(
1+ β − γ, β, α′, β ′; 1+ β − α

∣∣∣∣1x ,−y
)

(55)

where the two coefficients are

B1 = 0(β − α)0(γ )
0(β)0(γ − α)(−x)

−α B2 = B1(α ↔ β). (56)

So, with the help of equation (55) we rewriteF3 in terms ofH2 without worrying
very much about constant factors because they arrange themselves properly in the process.
Indeed, in this case both factors on the RHS containing gamma functions are singular
(this is a special case of analytic continuation known as the logarithmic case), but whose
singularities cancel out, leaving us with a finite result as it should be. Then,

J1 ∼ F3

(
1, 1, 1, 1; 5

2

∣∣∣∣ s

4m2
,
t

4m2

)
= C1H2

(
−1

2
, 1, 1, 1; 1

∣∣∣∣4m2

s
,
−t

4m2

)
+C2H2

(
−1

2
, 1, 1, 1; 1

∣∣∣∣4m2

s
,
−t

4m2

)
(57)

which clearly portrays the sameH2 function we have inJ7. Conclusion: NDIM provides,
even if we did not know (55)a priori, the transformationJ1→ J7, or, in other words, the
analytic continuation formulaF3 → H2. Moreover, as Erd́erlyi [18] mentioned, there is a
transformation similar to (55) for the variabley in F3. This will give J1→ J8.

Next, in order to verify that there are branch points in the Feynman integral, we can
do the following. Consider the definition of the hypergeometric functionH2 given in (44).
Substituting the values of the parameters—recall that the derivatives of an analytic function
are also analytic having the same region of convergence—two of them cancel out and we
get

H2

(
−1

2
, 1, 1, 1; 1

∣∣∣∣x, y) = ∞∑
µ,ν=0

(1|ν)(1|ν)
( 1

2|ν)
(−y)ν
ν!

(
−1

2
− ν

∣∣∣∣µ) xµµ!
(58)
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where we have used the identity(a| − k) = (−1)k/(1− a|k). Observe that the series inµ
is a hypergeometric function1F0 [17] that can be summed. It results in the following

H2

(
−1

2
, 1, 1, 1; 1

∣∣∣∣x, y) = √1− x
∞∑
ν=0

(1|ν)(1|ν)
( 1

2|ν)
[−y(1− x)]ν

ν!
(59)

with variablesx and y given in eitherJ7 or J8. The remaining series inν is a 2F1

hypergeometric function that can be written down in terms of an elementary function (an
arcsin one) and it is straightforward to show that it has branch points, see (63) below.

The same procedure can be applied toJ3. Using (55) for the hypergeometric function
F3, we get

J3 ∼ F3

(
1, 1, 1,

1

2
; 2
∣∣∣∣−ts , 4m2

s

)
= C3H2

(
0, 1, 1,

1

2
; 1
∣∣∣∣−st , −4m2

s

)
+C4H2

(
0, 1, 1,

1

2
; 1
∣∣∣∣−st , −4m2

s

)
(60)

yielding J3 → J6. The analogous transformation for the variabley in F3 yields J3 → J5

and so on.
As above, it is possible to express thisH2 function in terms of an elementary function,

this time a square root. Considering its definition, the cancelling of the parametersβ and
ρ for the specified values and summing the series inν we get,

H2

(
0, 1, 1,

1

2
; 1
∣∣∣∣x, y) = ∞∑

ν=0

[−y(1− x)]ν( 1
2|ν)

ν!
= 1√

1+ y(1− x) . (61)

Observe that the square root in the denominator is equal toRst , see equation (40). An
important point to note is that even though the results remain divergent, they are still
connected by an analytic continuation formula. The questions that need to be then addressed
are: What does this mean? What is the nature of these singularities?

First of all, it is known [12] that a four-point graph like the one in the photon–photon
scattering has no leading singularities in the physical region. Such singularities do happen
to occur in four-point functions when the two incoming particles enter the same vertex and
the two outgoing particles also leave the same vertex (see figure 6). However, since this is
not our case, we conclude that the singularities we have do not occur on the physical sheet
[12].

Secondly, in analytically continuing a given function from a regionR1 into another
region,R2 it is important that no singularities be present between the regions, otherwise
the result for the analytic continuation may not be unique. The non-uniqueness always
manifests itself whenever the singularity is of the branch-point type [19]. We know that for
the photon–photon scattering process we have a branch-cut ins = 4m2 in the s-channel, so
that in carrying out our analytic continuation fromJ6→ J3, we are crossing this branch-cut,
and then the singularities do arise.

Figure 6. The general 2-particle→ 2-particle Feynman graph that has
leading singularity(ies) on the physical sheet [12].
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This simple logic shows us the great possibilities of NDIM. It reproduces three general—
with no restriction in the parameters—analytic continuation relations between Appel’s
hypergeometric functions which are far from trivial to obtain (see [18]). The technique
also allows us the added bonus of pinpointing singularities of Feynman integrals.

Eden [20] devised a technique to find out the singularities of integral representations.
In [12] Eden et al applied it in the general box diagram and the equation of Landau’s
surface—the surface of possible singularities of a integral representation—is given by a
4×4 determinant. In our case (equal mass for the virtual matter fields and on-shell photons)
the Landau’s equation [1, 12, 21] is,

st

4m6

(
st

4m2
− s − t

)
= 0 (62)

so that there are four possible solutions,

s = 0 t = 0 s = 4m2t

t − 4m2
t = 4m2s

s − 4m2
. (63)

It is important to observe that the two last solutions make the hypergeometric functionH2

in (61) and in (59) singular.They are branch points of the Feynman integral. The first two
are the so-called pseudo-threshold [1, 12, 21]—singularities of the Feynman integral which
occur on an unphysical sheet—see also that the possible singularities of (5) are located in the
region of convergence of the two above functions,J3 andJ4. This is why the poles do not
cancel: because of the so-called pinch singularities. We can verify, comparing the analysis
contained in [1], that the last two solutions of Landau’s equation are in fact singularities
of (5).

6. Conclusion

Using NDIM we have evaluated a massive box diagram integral, namely, a Feynman
integral bearing four massive propagators. This scalar integral is the one appearing in
the photon–photon scattering in QED and the two well known results, expressed in terms
of hypergeometric functions, have been easily found. So, the computation of such an
integral, done as a ‘lab test’ for NDIM, has revealed a powerful technique, which transfers
the intricacies of performing Feynman integrals in positive dimensions to that of solving a
system of linear algebraic equations in negative dimensions, a far simpler task to perform
than, for example, solving parametric integrals. More than that, surprisingly, the technique
not only reproduces the standard results, but gives simultaneously, solutions covering other
regions of the external momenta.
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